The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation

نویسندگان

  • S Heins
  • P C Wong
  • S Müller
  • K Goldie
  • D W Cleveland
  • U Aebi
چکیده

Neurofilaments, assembled from NF-L, NF-M, and NF-H subunits, are the most abundant structural elements in myelinated axons. Although all three subunits contain a central, alpha-helical rod domain thought to mediate filament assembly, only NF-L self-assembles into 10-nm filaments in vitro. To explore the roles of the central rod, the NH2-terminal head and the COOH-terminal tail domain in filament assembly, full-length, headless, tailless, and rod only fragments of mouse NF-L were expressed in bacteria, purified, and their structure and assembly properties examined by conventional and scanning transmission electron microscopy (TEM and STEM). These experiments revealed that in vitro assembly of NF-L into bona fide 10-nm filaments requires both end domains: whereas the NH2-terminal head domain promotes lateral association of protofilaments into protofibrils and ultimately 10-nm filaments, the COOH-terminal tail domain controls lateral assembly of protofilaments so that it terminates at the 10-nm filament level. Hence, the two end domains of NF-L have antagonistic effects on the lateral association of protofilaments into higher-order structures, with the effect of the COOH-terminal tail domain being dominant over that of the NH2-terminal head domain. Consideration of the 21-nm axial beading commonly observed with 10-nm filaments, the approximate 21-nm axial periodicity measured on paracrystals, and recent cross-linking data combine to support a molecular model for intermediate filament architecture in which the 44-46-nm long dimer rods overlap by 1-3-nm head-to-tail, whereas laterally they align antiparallel both unstaggered and approximately half-staggered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of dominant and recessive assembly-defective mutations in mouse neurofilament NF-M

We have generated a set of amino- and carboxy-terminal deletions of the neurofilament NF-M gene and determined the molecular consequences of forced expression of these mutant constructs in mouse fibroblasts. To follow the expression of mutant NF-M subunits in transfected cells, a 12 amino acid epitope (from the human c-myc protein) was expressed at the carboxy terminus of each mutant. We show t...

متن کامل

The effect of rod domain A148V mutation of neurofilament light chain on filament formation.

Neurofilaments (NFs) are neuronal intermediate filaments composed of light (NF-L), middle (NF-M), and heavy (NF-H) subunits. NF-L self-assembles into a "core" filament with which NF-M or NF-H co-assembles to form the neuronal intermediate filament. Recent reports show that point mutations of the NF-L gene result in Charcot-Marie-Tooth disease (CMT). However, the most recently described rod doma...

متن کامل

Analysis of the roles of the head domains of type IV rat neuronal intermediate filament proteins in filament assembly using domain-swapped chimeric proteins.

Type IV neuronal intermediate filament proteins consist of alpha-internexin, which can self-assemble into filaments and the neurofilament triplet proteins, which are obligate heteropolymers, at least in rodents. These IF proteins therefore provide good systems for elucidating the mechanism of intermediate filament assembly. To analyze the roles of the head domains of these proteins in contribut...

متن کامل

Assembly properties of dominant and recessive mutations in the small mouse neurofilament (NF-L) subunit

We have generated a set of amino- and carboxy-terminal deletions of the NF-L neurofilament gene and determined the assembly properties of the encoded subunits after coexpression with vimentin or wild-type NF-L. NF-L molecules missing greater than 30% (31 amino acids of the head) or 90% (128 amino acids of the tail) failed to incorporate into intermediate filament networks. Carboxy-terminal dele...

متن کامل

Two distinct functions of the carboxyl-terminal tail domain of NF-M upon neurofilament assembly: cross-bridge formation and longitudinal elongation of filaments

Neurofilaments are the major cytoskeletal elements in the axon that take highly ordered structures composed of parallel arrays of 10-nm filaments linked to each other with frequent cross-bridges, and they are believed to maintain a highly polarized neuronal cell shape. Here we report the function of rat NF-M in this characteristic neurofilament assembly. Transfection experiments were done in an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 123  شماره 

صفحات  -

تاریخ انتشار 1993